On regular subgroup functors of finite groups

نویسندگان

چکیده

Abstract A subgroup functor τ \tau is said Φ \Phi -regular if for all primitive groups G G , whenever H ∈ ( ) H\in \left(G) a p p -subgroup and N N minimal normal of then ∣ : ∩ = d | G:{N}_{G}\left(H\cap N)| ={p}^{d} some integer d . In this article, we investigate in which primary subgroups are -subgroups obtain new criteria the supersolubility or -nilpotency group.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $m^{th}$-autocommutator subgroup of finite abelian groups

Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G‎,‎alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.

متن کامل

Relative non-Normal Graphs of a Subgroup of Finite Groups

Let G be a finite group and H,K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H , denoted by NH,K, which is a bipartite graph with vertex sets HHK and KNK(H) and two vertices x ∈ H HK and y ∈ K NK(H) are adjacent if xy / ∈ H, where HK =Tk∈K Hk and NK(H) = {k ∈ K : Hk = H}. We determined some numerical invariants and state that when this graph is planar or...

متن کامل

subgroup intersection graph of finite abelian groups

let $g$ be a finite group with the identity $e$‎. ‎the subgroup intersection graph $gamma_{si}(g)$ of $g$ is the graph with vertex set $v(gamma_{si}(g)) = g-e$ and two distinct vertices $x$ and $y$ are adjacent in $gamma_{si}(g)$ if and only if $|leftlangle xrightrangle capleftlangle yrightrangle|>1$‎, ‎where $leftlangle xrightrangle $ is the cyclic subgroup of $g$ generated by $xin g$‎. ‎in th...

متن کامل

Finite Groups with NR−Subgroup

Let G be a finite group. Yakov Berkovic investigated the following concept: A subgroup H of G is called NR−subgroup with respect to G if A = AG ⋂ H for any subgroup A H.In particulary,called a finite group G NN−group if its any subgroup is either normal subgroup or NR−subgroup of G. In fact, all groups with order p -p3 are NN -group,where p is a prime. In this paper, the nature and structure of...

متن کامل

on $m^{th}$-autocommutator subgroup of finite abelian groups

let $g$ be a group and $aut(g)$ be the group of automorphisms of‎‎$g$‎. ‎for any natural‎‎number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $g$ is defined‎‎as‎: ‎$$k_{m}(g)=langle[g,alpha_{1},ldots,alpha_{m}] |gin g‎,‎alpha_{1},ldots,alpha_{m}in aut(g)rangle.$$‎‎in this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎‎all finite abelian groups‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2022

ISSN: ['2391-5455']

DOI: https://doi.org/10.1515/math-2022-0549